❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.
Библиотека собеса по Data Science | вопросы с собеседований from ca